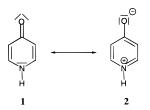
Trends in Inversion Barriers of Group 15 Compounds. 3. Are **Fluorinated Pyridone Derivatives Planar or Nonplanar?**

Patricia A. Hunt, Thomas Fischer, and Peter Schwerdtfeger*,[†]


Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand

Received June 9, 1997[®]

Fluorinated compounds of 4-pyridone are studied using the semiempirical PM3 method, and the ab initio HF and MP2 methods. The perfluorinated derivative of 4-pyridone is predicted to have a nonplanar ring structure with the fluorine ligand at the nitrogen atom lying above the pyridine ring. The inversion barrier for the pentafluoro-4-pyridone is predicted to be 26 kJ/mol similar to that found for NH₃. This distortion corresponds to a static second-order Jahn–Teller effect and is expected to be experimentally detectable at low temperatures. N-Fluoro-4-pyridone is predicted to be nonplanar and has a small inversion barrier of 0.2 kJ/mol at the MP2 level. However, the maximum point of this barrier lies below the lowest zero-point out-of-plane inversion vibrational mode ($\frac{1}{2}$ 84 cm⁻¹ \equiv 0.5 kJ/mol). This corresponds to a dynamic Jahn–Teller effect and thus is experimentally difficult to verify. The MP2 calculations indicate that at least one fluorine atom is required at the ring nitrogen in order to achieve nonplanarity. Schleyer's negative-independent chemical shift method (NICS) is applied, and the results are used to discuss aromaticity in fluorinated pyridones. The NICS values show that succesive fluorination increases aromaticity. The vibrational spectra of all fluorinated pyridone derivatives are predicted. The vibrational spectrum of 4-pyridone is discussed in detail using a normal-mode analysis defined within a set of nonredundant internal coordinates.

Introduction

It is well-known that the inversion barrier of NH₃ is quite small (24.2 kJ/mol),1 the smallest in the series of Group 15 trihydrides.² It therefore comes as no surprise that some nitrogen-containing compounds, like pyrrole or pyridone, appear as planar species.³ In pyridone the driving force for planarity at the nitrogen center is probably the conservation of aromaticity.⁴ For example, for 4-pyridone one can draw the following resonance structures.

A more detailed discussion of possible resonance forms is given in ref 6. The tautomeric form of 1, 4-hydroxypyridine, is aromatic in character and therefore has a planar ring system. From NMR ring-current measurements it was estimated that 2-pyridone has about 35% the aromaticity of benzene.⁶ Even so, if valence bond

(6) Boulton, A. J.; McKillop, A. In *Comprehensive Heterocyclic Chemistry*; Boulton, A. J., McKillop, A., Eds.; Pergamon: New York, 1984; Vol. 2, Part 2A, p 1.

theory predicts a lesser percentage of the zwitterionic structure 2 compared to 1, the small inversion barrier predicted for N-containing compounds⁷ like **1** and the

(7) Lambert, J. B. In Topics in Stereochemistry, Allinger, N. L., Eliel, E. L., Eds.; Wiley: New York, 1971; Vol. 6.
 (8) Hatherley, L. D.; Brown, R. D.; Godfrey, P. D.; Pierlot, A. P.;

Caminati, W.; Damiani, D.; Melandri, S.; Favero, L. B. J. Phys. Chem. **1993**, *97*, 46. (9) Weston, R. E. J. Am. Chem. Soc. **1954**, *76*, 2645.

(10) Liebman, J. F.; Politzer, P.; Sanders, W. A. J. Am. Chem. Soc. 1976, 98, 5115.

(11) Schwerdtfeger, P.; Boyd, P. D. W.; Fischer, T.; Hunt, P.; Liddell, M. J. Am. Chem. Soc. 1994, 116, 9620.

(12) (a) Del Bene, J. E. J. Am. Chem. Soc. **1979**, 101, 7146. (b) Garner, C. D.; Hillier, I. H.; Knight, M. J.; MacDowell, A. A.; Walton, I. B. J. Chem. Soc., Faraday Trans. **2 1980**, 76, 885. (c) LaManna, G.; Venuti, E. J. Comput. Chem. 1982, 3, 593. (d) Scanlan, M.; Hillier, I. H. Chem. Phys. Lett. **1984**, 107, 338. (e) Field, M. J.; Hillier, I. H.; Guest, M. F. J. Chem. Soc., Chem. Commun. **1984**, 1310. (f) Lledos, A.; Bertran, J. J. Mol. Struct (THEOCHEM) 1985, 120, 73. (g) Cieplak, P.; Bash, P.; Chandra Singh, U.; Kollman, P. A. *J. Am. Chem. Soc.* **1987**, *109*, 6283. (h) Palmer, M. H.; Blake; A. J.; Gould, R. O. *Chem.* Phys. 1987, 115, 219. (i) Field, M. J.; Hillier, I. H. J. Chem. Soc., Perkin *Trans. 2* **1987**, 617. (j) Kwiatkowski, J. S.; Bartlett, R. J.; Person, W. B. *J. Am. Chem. Soc.* **1988**, *110*, 2353. (k) Cosentino, U.; Scolastico, C.; Moro, G.; Morosi, G.; Pitea, D. *J. Mol. Struct. (THEOCHEM)* **1989**, 201, 199. (I) Adamowicz, L. Chem. Phys. Lett. 1989, 161, 73. (m)
 Moreno, M.; Miller, W. H. Chem. Phys. Lett. 1990, 171, 475. (n) Wong,
 M. W.; Wiberg, K. B.; Frisch, M. J. J. Am. Chem. Soc. 1992, 114, 1645.
 (o) Les, A.; Adamowicz, L.; Nowak, M. J.; Lapinski, L. J. Mol. Struct. (*THEOCHEM*)**1992**, 277, 313. (p) Lapinski, L.; Nowak, M. J.; Fulara, J.; Les, A.; Adamowicz, L. J. Phys. Chem. **1992**, 96, 6250. (q) Slanina, Z.; Les, A.; Adamowicz, L. J. Mol. Struct. (THEOCHEM) **1992**, 257, 491. (r) Rendell, A. P.; Guest, M. F.; Kendall, R. J. Comput. Chem. (1) Reflection 14, 1429. (s) Sobolewski, A. L. Chem. Phys. Lett. 1993, 211, 293.
 (t) Michel, A. G.; Trudel, Y.; Dion, C. Int. J. Quantum Chem. 1993, 46, 183. (u) Hatherley, L. D.; Brown, R. D.; Godfrey, P. D.; Pierlot, A. 46, 183. (u) Hatherley, L. D.; Brown, R. D.; Godfrey, P. D.; Pierlot, A. P.; Caminati, W.; Damiani, D.; Melandri, S.; Favero, L. B. J. Phys. Chem. 1993, 97, 46. (v) Barone, V.; Adamo, C. J. Comput. Chem. 1994, 15, 395. (w) Barone, V.; Adamo, C. Chem. Phys. Lett. 1994, 226, 399. (x) Adamo, C.; Lelj, F. Chem. Phys. Lett. 1994, 223, 54. (v) Les, A.; Adamowicz, L.; Nowak, M. J.; Lapinski, L. J. Mol. Struct. (THEOCHEM) 1994, 312, 157. (z1) Les, A.; Adamowicz, L.; Nowak, M. J.; Lapinski, L. J. Mol. Struct. (THEOCHEM) 1994, 312, 157. (z1) Les, A.; Adamowicz, L.; Nowak, M.; Lapinski, L. J. Mol. Struct. (THEOCHEM) 1994, 312, 157. (z3) Swiatkowski, J. J. Mol. Struct. (THEOCHEM) 1994, 318, 201. (z4) Hall, R. J.; Burton, N. A.; Hillier, I. H.; Young, P. E. *118*, 201. (z4) Hall, R. J.; Burton, N. A.; Hillier, I. H.; Young, P. E. *Chem. Phys. Lett.* **1994**, *220*, 129. (z5) McCarthy, W. J.; Lapinski, L.; Adamowicz, L.; Nowak, M. J. J. Chem. Phys. **1995**, 103, 656. (26) Sobolewski, A. L.; Adamowicz, L. J. Phys. Chem. **1996**, 100, 3933.

[†] This work is dedicated to Prof. Con Cambie (Auckland) on the occasion of his emeritus

^o Abstract published in Advance ACS Abstracts, October 15, 1997. (1) Swalen, J. D.; Ibers, J. A. J. Chem. Phys. 1962, 36, 1914.

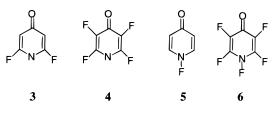
⁽²⁾ Schwerdtfeger, P.; Laakkonen, L. J.; Pyykkö, P. J. Chem. Phys. 1992, 96, 6807.

⁽³⁾ Johnson, C. D. In *Comprehensive Heterocyclic Chemistry*, Boulton, A. J., McKillop, A., Eds.; Pergamon: New York, 1984; Vol. 2, Part (4) Nonplanar distortion as a result of reduced aromaticity has been

⁽⁵⁾ Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and

Antiaromaticity, Electronic Structural Aspects, Wiley: New York, 1994.

Table 1. Optimized PM3, HF/6-31G*, and MP2/6-31G* Geometries for the Structures 2-5^a


Hunt	et	al

		2			3			4			5			6	
parameter	PM3	HF	MP2	PM3	HF	MP2	PM3	HF	MP2	PM3	HF	MP2	PM3	HF	MP2
							Dist	ances							
NC ₂	1.400	1.365	1.370	1.413	1.361	1.368	1.409	1.361	1.365	1.411	1.355	1.362	1.419	1.364	1.368
	1.408	_	_	1.420	_	_	1.416	_	1.365		1.371	1.357	1.441	1.394	1.394
C_2C_3	1.352	1.337	1.360	1.356	1.327	1.348	1.370	1.329	1.358	1.350	1.338	1.361	1.369	1.330	1.362
	1.350	-	-	1.354	-	-	1.369	-	1.358	1.345	1.332	1.363	1.364	1.318	1.349
C_3C_4	1.470	1.467	1.460	1.473	1.470	1.465	1.484	1.466	1.460	1.473	1.469	1.462	1.488	1.468	1.460
	1.472	-	-	1.474	-	-	1.369	-	1.460	1.477	1.473	1.462	1.491	1.477	1.468
C ₄ O	1.225	1.206	1.243	1.222	1.201	1.238	1.214	1.195	1.235	1.223	1.204	1.242	1.212	1.193	1.235
	1.224	-	-	1.221	-	-	1.213	-	1.235		1.201	1.242	1.210	1.186	1.229
NX_1	0.991	0.993	1.011	0.995	0.996	1.013	0.995	0.997	1.015	1.384	1.340	1.387	1.373	1.327	1.366
	0.992	-	-	0.996	-	-	0.996	-	1.015		1.353	1.381	1.381	1.367	1.431
C_2X_2	1.095	1.074	1.086	1.335	1.311	1.341	1.332	1.305	1.335	1.098	1.071	1.084	1.328	1.295	1.325
~	1.095	_	_	1.335	_		1.332	_	1.335		1.072	1.084	1.328	1.298	1.326
C_3X_3	1.098	1.073	1.085	1.096	1.071	1.014	1.336	1.319	1.341	1.096	1.072	1.084	1.336	1.317	1.339
	1.098	-	-	1.096	-	-	1.336	-	1.341	1.096	1.072	1.084	1.335	1.312	1.335
							Ar	igles							
NC_2C_3	120.8	121.9	121.0		123.7	123.2		Ī22.3	121.6	119.0	119.4	118.2	121.0	120.0	118.9
	121.2	-	-	123.7	-	-	123.0	-	121.6	120.0	120.1	118.5	122.2	122.6	121.7
$C_2C_3C_4$	121.3		121.9		119.7	120.2		121.6	122.4		121.4		122.4	122.2	123.2
	121.2	-	-	120.2	-	-	121.9	-	122.4	121.4	121.1		122.1	121.5	121.8
C_3C_4O	122.4	123.1	123.2		122.6	122.6		123.6	123.8		122.9		123.2	123.5	123.7
~	122.4			122.1			123.5		123.8	122.3	122.9		123.4	123.3	123.3
			119.7		120.8	120.7		120.3	120.2		117.9		120.2	118.7	118.4
	117.0			118.8			118.9		120.2	114.9	114.5		115.6	108.8	107.8
	116.6		115.8		112.1	112.4		113.7	114.4		115.4		114.6	114.7	115.5
	116.2	-	-	112.2	-	-	113.6	-	114.4	116.4	114.7		113.9	113.0	113.7
$C_2C_3X_3$	120.5		119.9		120.7	120.3		120.3	119.2		120.3		119.4	119.7	118.4
C C C O	120.7	_ 180	-	121.2	_ 180	_ 180	119.7	-	<i>119.2</i> 180	120.6	120.7		<i>119.8</i>	121.3	120.4
$C_2C_3C_4O$	180 <i>177.9</i>	180	180	180 <i>177.9</i>	180	180	180 <i>178.3</i>	180	-179.1	180 <i>173.9</i>	180 <i>178.6</i>	180 <i>179.7</i>	180 175.7	180 - <i>179.6</i>	180 - <i>175.8</i>
$X_3C_3C_4O$	0	0	0	0	0	0	0	0	-179.1	0	0	0	0	-179.0	-175.8
A3C3C4O	-2.4	_	<u> </u>	-2.7	_	_	-2.5	<u> </u>	-0.1	-7.0	-2.6	-0.6	-5.5	2.1	1.9
$X_2C_2C_3C_4$	180		180		180	180		180	180	180	180		180	180	180
12020304	179.7			179.4			179.3		179.4	179.1	178.8		178.8	178.6	177.7
$N_1C_2C_3C_4$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1020304	-3.8	_	_	-4.0	_	_	-4.3	_	-1.4	-5.8	-5.4	-4.4	-7.0	-4.9	-11.1
$X_1N_1C_2C_3$			180		180	180		180	180	180	180		180	180	180
	160.5	_	_	161.2	_	_	163.0	_	177.8	160.4	159.0		157.3	132.2	135.6

^{*a*} The geometries for the nonplanar structures are set in italics and are given below the ones kept in the planar arrangement ($C_{2\nu}$ symmetry). The notation for the different atoms is given in Figure 1. All distances are in angstroms, bond and torsion angles are in degrees.

strong tendency for aromatic compounds to be planar⁵ rationalizes a planar C_5N ring arrangement for 4-pyridone. Similar arguments hold for 2-pyridone. All pyridone derivatives studied so far by spectroscopic methods have been predicted to be planar.⁸

A nonplanar pyridone ring system may be achieved by either decreasing the aromatic character in 2 or by increasing the inversion barrier at the nitrogen center in 1. For example, we expect that the phosphorus analogue of 1 would be nonplanar due to the fact that the inversion barrier of PH₃ is 132 kJ/mol.⁹ On the other hand, Liebman et al. pointed out that a subsequent substitution of hydrogen by more electronegative fluorine ligands in NH₃ raises the inversion barrier substantially, 10 i.e., NF_3 has an inversion barrier of approximately 300 kJ/mol. 11 Thus, introducing electronegative substituents into the ring system 1 may eventually overcome the aromatic stabilization resulting in a nonplanar structure. The question is, at what stage of fluorination will the ring system become nonplanar? The fluorinated compounds of pyridone have not been studied in detail (in contrast to the fluorine-substituted compounds of pyridine), and we predict structures and vibrational frequencies for the compounds shown below. Moreover, theoretical studies in the past have concentrated on the 2-hydroxypyridine derivatives and its lactam tautomers^{12–15} because of their role in biologically relevant systems.¹⁶ There are only a few Hartree-Fock or semiempirical studies on 4-hydroxypyridine or 4-pyridone.^{17–20} For example, Fraga et al. studied the tautomeric equilibrium between 4-hydroxypyridine and 4-pyridone by theoretical methods including solvent effects.¹⁸

There has been considerable discussion of the infrared and Raman spectrum of 4-pyridone.^{21,22} The assignment

(18) Sordo, J. A.; Klobukowski; M.; Fraga, S. J. Am. Chem. Soc. 1985, 107, 7569.

(19) Scanlan, M. J.; Hillier, I. H.; MacDowell, A. A. J. Am. Chem. Soc. **1983**, 105, 5, 3568.

⁽¹³⁾ Adamowicz, L. Chem. Phys. Lett. 1989, 161, 73.

⁽¹⁴⁾ Nowak, M.; Lapinski, L.; Fulara, J.; Les, A.; Adamowicz, L. J. Phys. Chem. 1992, 96, 1562.

⁽¹⁵⁾ Facelli, J. C.; Orendt, A. M.; Contreras, R. H.; Tufro, M. F.; deKowalewski, D. G. J. Phys. Chem. **1992**, *96*, 7895.

⁽¹⁶⁾ Beak, P Acc. Chem. Res. 1977, 10, 186.

^{(17) (}a) Corongiu, G.; Clementi, E.; Dagnino, M.; Paoloni, L. Chem. Phys. 1979, 40, 439. (b) Del Bene, J. E. J. Am. Chem. Soc. 1979, 101, 6184. (c) Del Bene, J. E. J. Am. Chem. Soc. 1980, 102, 5191. (d) Krebs, C.; Hofmann, H. J.; Köhler, H. J.; Weiss, C. Chem. Phys. Lett. 1980, 69, 537. (e) Anthony, M. C.; Waltz, W. L.; Mezey, P. G. Can. J. Chem. 1982, 60, 813. (f) Scanlan, M. J.; Hillier, I. H.; Davies, R. H. J. Chem. Soc., Chem. Commun. 1982, 685. (g) Les, A.; Kukawska-Tarnawska, B. J. Mol. Struct. (THEOCHEM) 1986, 148, 45. (h) Luque, F. J.; Illas, F.; Orozco, M. J. Comput. Chem. 1990, 11, 416.

Table 2. HF/6-31G* and MP2/6-31G* Harmonic Frequencies for the Minimum Planar Structures ($C_{2\nu}$ Symmetry) of Compound 2-4^a

							compe	un							
			2	2		3	4				2		:	3	4
n	IRREP	mode	HF	MP2	HF	MP2	HF	n	IRREP	mode	HF	MP2	HF	MP2	HF
1	B_1	out-of-plane	178	150	176	140	111	16	B_2	in-plane	1161	1103	633	578	469
			3	0.3	3	0.2	2				0.05	3	0.3	0.4	0.3
2	B_1	out-of-plane	423	392	194	172	151	17	A_1	in-plane	1304	1232	1123	1048	803
			133	82	5	8	40				30	16	33	33	10
3	A_2	out-of-plane	460	412	257	232	151	18	B_2	in-plane	1344	1289	1119	1051	775
		-	0	0	0	0	0				0.6	0.1	13	26	0.5
4	B_2	in-plane	496	452	400	364	303	19	B_2	in-plane	1374	1299	1293	1193	1045
		•	10	5	13	8	0.02				29	8	84	55	172
5	A_1	in-plane	555	520	355	324	290	20	B_2	in-plane	1552	1456	1333	1258	1270
		1	10	7	4	5	0.2			1	0.09	0.1	6	1	17
6	B_1	H ₁ out-of-plane	541	526	355	328	236	21	A_1	in-plane	1568	1461	1369	1264	1270
		•	21	31	135	116	104			•	0.5	0.5	82	44	66
7	B_2	in-plane	672	629	533	493	363	22	B_2	in-plane	1679	1594	1460	1363	1375
	-	1	0.9	0.9	16	14	10		-	1	176	116	29	10	177
8	B_1	out-of-plane	799	665	738	591	398	23	B_2	in-plane	1788	1657	1693	1603	1468
	-	1	3	16	12	3	19			1	10	0.5	371	367	22
9	A_2	out-of-plane	888	799	680	581	406	24	A_1	in-plane	1844	1688	1551	1452	1444
	2	· · · · · ·	0	0	0	0	0		1	I · ·	77	1	6	9	276
10	B ₁	out-of-plane	944	823	776	681	661	25	A_1	in-plane	1932	1764	1901	1729	1543
	-	· · · · · ·	110	84	3	4	12			1	736	367	529	6	112
11	A_1	in-plane	866	835	543	508	350	26	B_2	in-plane	3397	3254	1836	1712	1747
		r	8	3	19	12	4		2	I · ·	4	5	135	54	205
12	B_1	out-of-plane	1096	906	929	796	753	27	A_1	in-plane	3397	3254	1947	1780	1935
	-1	· ··· · · · ·	0.6	1	156	100	6		1	P	8	4	709	647	748
13	A_2	out-of-plane	1099	913	928	823	676	28	B_2	in-plane	3417	3274	3434	3296	1900
	2	· ··· · · · ·	0	0	0	0	0		- 2	P	16	5	0.6	3	161
14	A_1	in-plane	1069	1007	654	608	488	29	A_1	in-plane	3418	3275	3435	3296	1974
	1	P0	77	50	15	10	8	20	1	promo	0.8	0.5	4	5	161
15	A_1	in-plane	1103	1045	997	949	651	30	A_1	N ₁ H ₁ stretch		3669	3880	3653	3873
10	. •1	piune	2	50	6	7	6	00	1		122	123	217	211	262
			~	00	0	,	U				1~~	120	~17	~11	~~~~

^a Frequencies are given in cm^{-1} , infrared intensities in km mol⁻¹ are set in italics. The atomic labeling is given in Figure 1. For 4-pyridone 2 the modes are shown in Figure 2. Only 4-pyridone is shown in increasing frequency order; the other frequencies are assigned to their original C_{2v} structure as best as possible. In-plane modes: A₂ or B₁, out-of-plane modes: A₁ or B₂.

of the C=O stretching mode especially seems to cause difficulties. This problem will be addressed using a harmonic frequency analysis within the ab initio framework allowing for a detailed analysis of different vibrational contributions.

Computational Details

To predict if nonplanar pyridone derivatives exist, we present theoretical studies²³ at the PM3²⁴ and Hartree-Fock (HF) level for compound **1**, the difluoro derivative **3**, the tetrafluoro compound **4**, the *N*-fluoro compound **5**, and the pentafluoro compound 6. We include electron correlation by applying second-order Møller-Plesset theory (MP2).²⁵ A 6-31G* split-valence basis set was used throughout. The geometries were fully optimized by gradient techniques²³ and followed by a harmonic frequency analysis. The orbital space has been kept fully active in the MP2 calculation. In particular for com-

Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; DeFrees, D. J.; Baker, J.; Stewart, J. J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A., program GAUSSIAN94, Rev. D.3, Gaussian, Inc., Pittsburgh PA, 1996.

(24) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
 (25) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

pound 6 the MP2 geometry optimization and frequency analysis using analytical first- and second-order derivatives with respect to nuclear coordinates were very computer time expensive and required about 7.9 GB of disk space, 512 MB of memory, and 26 h of CPU on 8-processors of a multiprocessor SIC R10000 computer system. Some of the optimized planar structures are first-order transition states for the nitrogen ligand outof-plane motion, and only the frequencies for the optimized nonplanar structures are shown. The PM3, HF, and MP2 geometries are collected in Table 1. Frequency analyses at the PM3 and MP2 level are shown in Tables 2 and 3. Inversion barriers and dipole moments are listed in Table 4. As a reference to future work total electronic energies for the HF and MP2 6-31G* calculations are listed in Table 5. A code was developed to transform the Cartesian harmonic MP2 force-field into Pulay's force field defined in nonredundant internal coordinates (Table 6).²⁶ For 4-pyridone a normal-mode analysis using Pulay's M-matrix method was carried out allowing us to discuss the vibrational distribution of the fundamental modes (Table 7). For the tetrafluoro compound 4 and the N-fluorinated species 5 the location of a nonplanar structure was not trivial, and we had to apply very tight convergence criteria, i.e., $<10^{-10}$ au for the total electronic energy and $<10^{-4}$ au for the rootmean-square of the force field.

To discuss the widely used term aromaticity in more detail, we applied Schleyer's recently published negative-

⁽²⁰⁾ Schlegel, H. B.; Gund, P.; Fluder, E. M. J. Am. Chem. Soc. 1982, 104. 5347.

⁽²¹⁾ Batts, B. D.; Spinner, E. Aust. J. Chem. 1969, 22, 2581.

 ^{(22) (}a) Katritzky, A. R.; Ambler, A. P. *Phys. Methods Heterocycl. Chem.* 1963, 2, 161. (b) Katritzky, A. R.; Taylor, P. J. *Phys. Methods Heterocycl. Chem.* 1971, 4, 265. (c) Cook, M. J.; Katrizky, A. R.; Linda, (23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;

^{(26) (}a) Pulay, P.; Fogarasi, G.; Pang, F.; Boggs, J. E. J. Am. Chem. Soc. 1979, 101, 2550. (b) Fogarasi, G.; Pulay, P. In Vibrational Spectra and Structure, Durig, J. R., Ed.; Elsevier: Amsterdam, 1985; p 125.

Table 3. PM3, HF/6-31G*, and MP2/6-31G* Harmonic Frequencies for the Minimum Nonplanar Structures (Cs
Symmetry) of Compounds 2–6 ^a

		2	3		ymmetry) (4	1	5			6	
	IDDED			PM3	MP2	DM9		MD9	DM9		MD9
<u>n</u>	IRREP	PM3	PM3			PM3	HF	MP2	PM3	HF	MP2
1	$A'(B_1)$	121	114	70	31	79	111	84	53	86	85
2	A''(A2)	<i>3</i> 369	<i>0.7</i> 205	<i>0.3</i> 113	<i>13</i> 134	8 407	<i>17</i> 468	<i>16</i> 418	<i>0.2</i> 112	<i>3</i> 137	4122
~	\mathbf{A} (\mathbf{A}_2)	0.7	0.003	0.03	0.002	16	7	2	0.04	0.002	0.01
3	A'(B ₁)	391	178	168	139	224	182	143	116	139	130
		139	4	5	10	24	49	22	2	5	5
4	$A'(B_1)$	423	426	321	230	416	458	406	332	223	199
5	A''(B ₂)	<i>164</i> 475	<i>235</i> 369	7 337	<i>92</i> 274	<i>42</i> 346	24 389	<i>18</i> 362	5 316	<i>17</i> 290	9 251
3	$A (D_2)$	475	17	0.7	0.008	340	13	11	0.06	290 1	0.02
6	A'(A1)	509	308	309	262	442	489	455	317	291	263
		28	3	0.8	0.7	1	0.1	12	3	0.1	0.1
7	A''(B ₂)	612	484	350	325	498	511	467	342	312	280
0	A/(D)	0.1	2	11	6	3 665	3	0.8	1	0.1	0.009
8	$A'(B_1)$	651 <i>3</i>	588 17	422 <i>232</i>	352 <i>19</i>	665 <i>15</i>	774 54	632 <i>18</i>	586 <i>0.9</i>	440	405 5
9	A''(A ₂)	801	556	382	376	798	874	769	388	441	401
Ū	(112)	0.1	2	0.3	0.01	0.002	0.05	0.05	6	3	2
10	A'(B ₁)	851	647	575	458	863	943	812	623	622	564
		104	2	16	7	114	119	83	9	14	8
11	$A'(A_1)$	878	495	338	325	764	817	761	332	343	319
12	A''(A ₂)	7 965	<i>61</i> 903	<i>1</i> 644	<i>3</i> 555	<i>35</i> 973	<i>79</i> 1095	<i>58</i> 913	5 653	<i>1</i> 684	1 592
12	A (A2)	0.03	0.1	0.6	0	0.3	0	0.4	2	0.6	0.01
13	A'(B ₁)	972	948	773	638	983	1085	901	787	766	647
	· -/	27	155	34	0.3	4	5	6	28	10	68
14	$A'(A_1)$	977	643	444	601	914	856	835	384	478	448
15	A/(A)	16	<i>13</i>	53	4	<i>67</i>	<i>25</i> 1099	<i>24</i> 1036	17	0.3	1.6
15	$A'(A_1)$	1032 <i>41</i>	981 <i>25</i>	636 <i>19</i>	461 5	992 <i>37</i>	1099 2	1036 <i>0.04</i>	416 5	684	618 6
16	A''(B ₂)	1088	575	424	434	624	690	647	363	374	335
	(-2)	0.08	0.5	0.5	0.5	0.08	0.9	2	10	13	8
17	$A'(A_1)$	1140	1060	770	737	1120	1280	1198	662	738	681
4.0	A ///D \	0.1	6	0.4	3	0.9	12	4.3	59	48	3
18	A''(B ₂)	1158 <i>12</i>	1073 <i>0.02</i>	701	704	1109	1185	1117 <i>9.7</i>	431 <i>0.07</i>	467 <i>0.2</i>	439 <i>0.3</i>
19	A''(B ₂)	1234	1227	<i>1</i> 1046	<i>1</i> 973	<i>1</i> 1191	<i>5</i> 1354	<i>9.7</i> 1284	764	868	778
10	$\mathbf{M}(\mathbf{D}_2)$	0.6	3	30	143	7	11	4	0.6	0.9	0.2
20	A''(B ₂)	1361	3331	1320	1180	1308	1457	1389	1062	1083	1004
		2	25	51	1	4	20	3	53	223	167
21	$A'(A_1)$	1364	1308	1240	1179	1188	1342	1225	1085	1107	937
22	A''(B ₂)	<i>10</i> 1534	<i>2</i> 1434	<i>13</i> 1359	<i>62</i> 1287	<i>9</i> 1466	<i>32</i> 1604	<i>18</i> 1552	<i>50</i> 1323	<i>195</i> 1273	<i>113</i> 1186
66	$A(D_2)$	1334 <i>91</i>	20	22	73	76	1004	55	65	17	10
23	A''(B ₂)	1769	1573	1487	1411	1796	1767	1614	1488	1476	1391
		18	252	125	84	4	2	5	67	125	131
24	$A'(A_1)$	1793	1543	1503	1363	1354	1570	1456	1274	1284	1151
05	A/(A)	277	18	157	163	8	10	6	4	8	25
25	$A'(A_1)$	1934 <i>503</i>	1875 <i>567</i>	1641 <i>101</i>	$\begin{array}{c} 1444 \\ 45 \end{array}$	1815 <i>191</i>	$\begin{array}{c} 1849 \\ 45 \end{array}$	1667 1	1489 <i>88</i>	1443 <i>74</i>	1326 <i>20</i>
26	A''(B ₂)	3019	1854	1672	1630	3020	3415	3272	1634	1611	1499
	(-2)	20	22	63	190	32	0.4	0.07	29	143	80
27	$A'(A_1)$	3021	1947	1886	1738	1951	1956	1751	1631	1516	1405
a -		34	283	315	145	449	671	319	149	296	223
28	A''(B ₂)	3073	3071	1878	1739	3066	3440	3288	1893	1946	1742
29	A'(A ₁)	<i>79</i> 3075	<i>99</i> 3074	<i>24</i> 1959	<i>129</i> 1775	<i>91</i> 3022	<i>1</i> 3415	<i>0.3</i> 3271	<i>36</i> 1907	<i>113</i> 1991	<i>150</i> 1739
23	A (A1)	3075 12	3074 35	298	291	3022 49	0.05	0.3	228	236	157
30	$A'(A_1)$	3412	3380	3379	3642	3069	3441	3290	1971	2021	1779
		17	52	65	254	6	0.04	0.4	276	368	87

^a Frequencies are given in cm⁻¹, infrared intensities in km mol⁻¹ are set in italics. The irreducible representation for the fundamental mode resulting from the undistorted C_{2v} structures is set in brackets. Only 4-pyridone is shown in increasing frequency order; the other frequencies are assigned to their original C_{2v} structure as best as possible.

independent chemical shift method (NICS).²⁷ The gauge invariant atomic orbital approach (GIAO) is used^{23,28} to calculate the negative isotropic component of the diamagnetic shielding tensor at the center of the ring system

(NICS), which is determined by mean value of the ring atom coordinates.²⁷ Schlever has demonstrated that NICS values correlate well with other definitions of aromaticity; in addition NICS values are more readily obtained than most other indicators for aromaticity.^{27,29}

Results and Discussion

A comparison of the bond distances and bond angles shows that the PM3 method performs reasonably well.

⁽²⁷⁾ von Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. *J. Am. Chem. Soc.* **1996**, *118*, 6317. (28) Ditchfield, R. *Mol. Phys.* **1974**, *27*, 789. (29) von Schleyer, P.; Freeman, P. K.; Jiao, H.; Golduss, B. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 337.

Table 4. Energy Differences and Dipole Moments of
Compounds $2-6^a$

		-			
compound	method	ΔE	$\mu_z(C_{2v})$	$\mu_z(C_s)$	$\mu_x(C_s)$
2	PM3	1.1	6.01	5.11	0.61
	HF	0	7.03	-	_
	MP2	0	6.69	-	_
3	PM3	1.1	3.99	3.59	0.62
	HF	0	5.21	-	_
	MP2	0	4.94	-	_
4	PM3	0.9	5.08	4.70	0.38
	HF	0	6.45	-	-
	MP2	$< 10^{-3}$	6.20	6.20	0.05
5	PM3	0.6	4.85	3.59	0.84
	HF	0.1	4.72	3.97	0.24
	MP2	0.02	4.60	4.33	0.05
6	PM3	9.3	3.14	2.10	0.25
	HF	25.1	4.43	2.26	0.29
	MP2	26.4	4.40	1.98	0.27

^{*a*} Energy differences ΔE between the planar and nonplanar structures in kJ/mol and dipole moments μ in Debye. The dipole moments are listed for the planar structures ($C_{2\nu}$) and for the nonplanar structures ($C_{3\nu}$). Dipole moments are defined in direction N (+) to O (-) and ligand X₁ (+) to the ring (-) (see Figure 1).

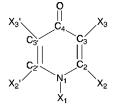


Figure 1. Atomic labeling for the 4-pyridone derivatives.

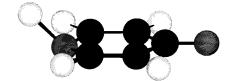
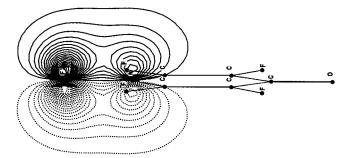



Figure 2. Molecular structure of pentafluoro-4-pyridone.

Figure 3. Contour diagram of the lowest lying totally bonding π -orbital ($\epsilon_{\pi} = -0.830$ au) of pentafluoro-4-pyridone.

Our calculated bond distances and angles for 4-pyridone agree nicely with the ones previously published by Schlegel et al. or Scanlan et al. who used Hartree–Fock theory within a 6-31G^{*} or 6-31G^{**} basis set, respectively.^{19,20} Interestingly, the PM3 approximation predicts a nonplanar structure for all compounds in contrast to the more accurate ab initio method. This may be explained by comparing the inversion barriers for NH₃ at different levels of theory. For NH₃ we obtain 41.8 kJ/mol at the PM3 level, 27.2 kJ/mol at the HF/6-31G^{*} level, and 27.4 kJ/mol at the MP2/6-31G^{*} level. It was shown recently that the PM3 method overestimates the inversion barrier in NF₃ significantly.¹¹ Thus there is a

greater tendency for PM3 to predict a nonplanar structure. However, for NH₂F we obtain a smaller barrier at the PM3 level compared to the other methods: 58.3 kJ/ mol at the PM3 level, 72.2 kJ/mol at the HF/6-31G* level, and 77.2 kJ/mol at the MP2/6-31G* level. The ab initio results show that 4-pyridone 1 and its difluoro derivative **3** are both planar, hence the increase in electronegativity and subsequent increase in the inversion barrier is not sufficient to overcome aromaticity. This is in contrast to the pentafluoro-4-pyridone 6, and possibly to the tetrafluoro-4-pyridone 4 and N-fluoro-4-pyridone 5 compounds, these are nonplanar at the 6-31G* MP2 level. The molecular structure of compound 6 is depicted in Figure 2. The predicted inversion barrier for this compound is 26 kJ/mol and is only slightly larger than that for NH₃. In contrast to NH₃, however, the large mass of the fluorine ligand implies that it will not readily undergo quantum tunneling, and therefore the nonplanar structure should be observable by standard spectroscopic methods (vibrational spectroscopy or gas-phase electron diffraction).

The accurate detection of nonplanar arrangements for floppy molecules is problematic because they exhibit shallow minima on the potential energy surface and can result in a dynamic Jahn-Teller effect. For example, planar structures of compounds 4 and 5 have very small imaginary frequencies of 22 cm⁻¹ and 73 cm⁻¹ respectively, where this mode corresponds to the N-hydrogen (or *N*-fluorine) out-of-plane motion. Moreover, improvement of the basis set and correlation method may eventually result in a planar structure for these compounds. If we assume that compound **4** is nonplanar, then the inversion motion involving the N-hydrogen in 4 can be approximated by a one-dimensional doubleminimum potential and tunneling splitting will occur. However, the barrier is extremely small (<0.1 cm⁻¹) and below the accuracy of the method applied, with the lowest frequency of 31 cm⁻¹ lying well above the maximum. There are only very small differences in bond lengths (<0.001 Å) and bond angles $(<0.1^{\circ})$ between the planar and the nonplanar structures of compound 4; the only sizable difference is calculated for some of the torsion angles (Table 1). The trend toward a nonplanar arrangement with increasing fluorine substitution can be seen, for example, in the lowest frequency corresponding to the N-hydrogen out-of-plane mode. If we compare the HF results for the planar structures, we have 178 cm⁻¹ for compound 1, 176 cm⁻¹ for compound 3, and 111 cm⁻¹ for compound 4.

In a previous paper (paper 2 in this series)¹¹ we discussed second-order (or pseudo) Jahn-Teller (JT) distortions in Group 15 containing compounds in some detail. For symmetric $(C_{2\nu})$ pyridone derivatives, the ligand-nitrogen (H-N or F-N) out-of-plane motion is of b_1 -symmetry, hence this must be the symmetry of the distortion second-order Hamiltonian, $\partial^2 H_0 / \partial q^2$, H_0 being the Hamiltonian fixed at the planar arrangement and qbeing the distortion coordinate (which is of b_1 -symmetry). We therefore expect a low lying ¹B₁ state to be responsible for symmetry breaking and thus the $a_1(HOMO)/b_1(LUMO)$ energy gap to give some insight into the magnitude of the second-order JT-term. However, analyzing these orbital energies we cannot find a clear trend in the HOMO/LUMO gap with respect to increasing fluorination. We note however, that the b_1 -LUMO in the pentafluorinated pyridone is the lowest lying of all pyridione compounds studied here.

Table 5. Total Electronic Energies within the 6-31G* Basis Set^a

method	geometry	2	3	4	5	6
HF	linear	-321.550314	-519.253082	-716.914423	-420.309532	-815.653042
	bent	-	-	-	-420.310038	-815.662593
MP2	linear	-322.543025	-520.583750	-718.590345	-421.477139	-817.504465
	bent	-	-	-718.590345	-421.477211	-817.514523

^{*a*} All values are in atomic units.

Table 6. Definition of the Internal Coordinates for the Normal Mode Analysis of 4-Pyridone^a

 $\begin{array}{c} \text{Ring Stretches s} \\ s_1 = C_4 C_3, \, s_2 = C_3 C_2, \, s_3 = C_2 N_1, \, s_4 = C_2 N_1, \, s_5 = C_3 C_{2'}, \, s_6 = C_{3'} C_{4'} \\ \text{Ring Deformations d} \\ \alpha_1 = C_3 C_4 C_3, \, \alpha_2 = C_4 C_3 C_2, \, \alpha_3 = C_3 C_2 N_1, \, \alpha_4 = C_2 N_1 C_{2'}, \, \alpha_5 = N_1 C_2 C_{3'}, \, \alpha_6 = C_{2'} C_{3'} C_4 \\ d_7 = -\frac{1}{-} (2\alpha_1 - \alpha_2 - \alpha_3 + 2\alpha_4 - \alpha_5 - \alpha_6), \, d_8 = \frac{1}{2} (\alpha_2 - \alpha_3 + \alpha_5 - \alpha_6), \end{array}$

trigonal deformation
$$d_9 = \frac{1}{\sqrt{6}}(\alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 + \alpha_5 - \alpha_6)$$

$$\begin{aligned} & \text{Ring Torsions t} \\ \tau_1 = C_4 C_3 C_2 N_1, \, \tau_2 = C_3 C_4 C_3 C_2, \, \tau_3 = C_3 C_5 N_1 C_{2'}, \, \tau_4 = N_1 C_2 C_3 C_4, \, \tau_5 = C_2 N_1 C_2 C_2, \, \tau_6 = C_2 C_3 C_4 C_3 \\ \text{asymmetric torsions t}_{10} = \frac{1}{2\sqrt{3}} (-\tau_1 + 2\tau_2 - \tau_3 - \tau_4 + 2\tau_5 - \tau_6), \, t_{11} = \frac{1}{2} (\tau_1 - \tau_3 + \tau_4 - \tau_6), \\ \text{puckering t}_{12} = \frac{1}{\sqrt{6}} (\tau_1 - \tau_2 + \tau_3 - \tau_4 + \tau_5 - \tau_6) \end{aligned}$$

Carbonyl Group Motions c

stretching $c_{13} = C_4O$, CO rocking $c_{14} = \frac{1}{\sqrt{2}}(\beta_1 - \beta_2)$, oxygen out-of-plane $c_{15} = OC_4C_3C_3$.

$$\begin{array}{c} \text{Ring Hydrogen r} \\ \gamma_{1} = \text{H}_{3}\text{C}_{3}\text{C}_{4}, \ \gamma_{2} = \text{H}_{3}\text{C}_{3}\text{C}_{2}, \ \gamma_{3} = \text{H}_{2}\text{C}_{2}\text{C}_{3}, \ \gamma_{4} = \text{H}_{2}\text{C}_{2}\text{N}_{1}, \ \gamma_{5} = \text{H}_{1}\text{N}_{1}\text{C}_{2}, \ \gamma_{6} = \text{H}_{1}\text{N}_{1}\text{C}_{2}, \ \gamma_{7} = \text{H}_{2}\text{C}_{2}\text{N}_{1}, \\ \gamma_{8} = \text{H}_{2}\text{C}_{2}\text{C}_{3}, \ \gamma_{9} = \text{H}_{3}\text{C}_{3}\text{C}_{2}, \ \gamma_{10} = \text{H}_{3}\text{C}_{3}\text{C}_{4} \\ \text{stretching } \mathbf{r}_{16} = \text{C}_{3}\text{H}_{3}, \ \text{CH rocking } \mathbf{r}_{17} = \frac{1}{\sqrt{2}}(\gamma_{1} - \gamma_{2}), \ \text{H out of plane } \mathbf{r}_{18} = \text{H}_{3}\text{C}_{3}\text{C}_{4}\text{C}_{2} \\ \text{stretching } \mathbf{r}_{19} = \text{C}_{2}\text{H}_{2}, \ \text{CH rocking } \mathbf{r}_{20} = \frac{1}{\sqrt{2}}(\gamma_{3} - \gamma_{4}), \ \text{H out of plane } \mathbf{r}_{21} = \text{H}_{2}\text{C}_{2}\text{C}_{3}\text{N}_{1} \\ \text{stretching } \mathbf{r}_{22} = \text{N}_{1}\text{H}_{1}, \ \text{NH rocking } \mathbf{r}_{23} = \frac{1}{\sqrt{2}}(\gamma_{5} - \gamma_{6}), \ \text{H out of plane } \mathbf{r}_{24} = \text{H}_{1}\text{N}_{1}\text{C}_{2}\text{C}_{2}, \\ \text{stretching } \mathbf{r}_{25} = \text{C}_{2}\text{H}_{2}, \ \text{CH rocking } \mathbf{r}_{26} = \frac{1}{\sqrt{2}}(\gamma_{7} - \gamma_{8}), \ \text{H out of plane } \mathbf{r}_{27} = \text{H}_{2}\text{C}_{2}\text{N}_{1}\text{C}_{4} \\ \text{stretching } \mathbf{r}_{28} = \text{C}_{3}\text{H}_{3}, \ \text{CH rocking } \mathbf{r}_{29} = \frac{1}{\sqrt{2}}(\gamma_{9} - \gamma_{10}), \ \text{H out of plane } \mathbf{r}_{30} = \text{H}_{3}\text{C}_{3}\text{C}_{2}\text{C}_{2}. \end{array}$$

^a See Figure 1 for the atomic numbering.

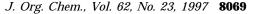
 $\beta_1 = \mathrm{OC}_4\mathrm{C}_3, \, \beta_2 = \mathrm{OC}_4\mathrm{C}_{3'}$

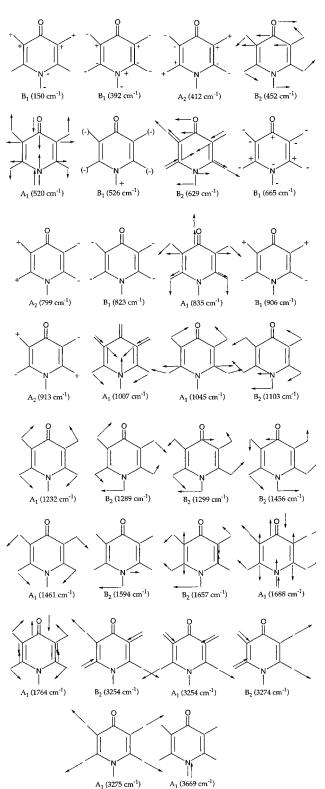
In the planar arrangement we expect a larger contribution from the benzenoid resonance structure 2 within the valence bond picture. NMR measurements of the ring current for the different compounds may give some insight.⁵ A larger contribution by resonance structure 2 should result in an increased dipole moment of the compound. Indeed, the PM3 and ab initio results of 6 show a significantly reduced dipole moment for the nonplanar compared to the planar form, Table 4. We also calculate slightly enhanced infrared A' out-of-plane intensities for the bent compared to the planar structure. Note also that the A₂-modes become infrared active when moving from the planar C_{2v} structure to the nonplanar C_s structure. However, Table 3 shows that the corre-

sponding A"-modes are very weak (as expected) and are not very useful for the prediction of a nonplanar arrangement.

To discuss aromaticity in these compounds in more detail, we calculated NICS values as outlined in the computational section (in ppm): -3.07 for compound **2**, -5.66 for **3**, -9.48 for **4**, -7.33 for **5**, and -10.07 for **6**. The NICS values show that fluorination *increases* aromaticity. Such effects have been discussed previously with respect to fluorinated pyridines and have been explained by an increase in π -electron density in the ring system due to a positive mesomeric effect from the fluorine ligands.⁶ Analyzing the MO-coefficients we find considerable p_{π} -interactions between the fluorine ligands

Table 7. MP2/6-31G* Vibrational Contributions^a


	Table 7.		
n	IRREP	$\tilde{\nu} \text{ [cm}^{-1}\text{]}$	distribution (in %)
1	B_1	150	60 t ₁₀ , 26 t ₁₂ , 20 t ₁₁
2	B_1	392	34 t ₁₂ , 44 r ₂₄ , 13 t ₁₁ , 6 c ₁₅
3	A_2	412	88 t ₁₁ , 29 t ₁₀ , -5 r ₁₈ , -5 r ₃₀
4	B_2	452	75 c ₁₄ , 12 d ₈
5	A_1	520	83 d ₇
6	B_1	526	51 r ₂₄ , 25 c ₁₅ , 8 t ₁₀ , 5 r ₁₈ , 5 r ₃₀
7	B_2	629	76 d ₈ , 9 s ₁ , 9 s ₆
8	B_1	665	57 t ₁₂ , 35 c ₁₅ , 7 r ₂₁ , 7 r ₂₇
9	A_2	799	31 r ₂₁ , 31 r ₂₇ , 18 r ₁₈ , 18 r ₃₀
10	B_1	823	33 c ₁₅ , 32 r ₁₈ , 32 r ₃₀ , 8 r ₂₁ , 8 r ₂₇ , -7 t ₁₂
11	A_1	835	36 s ₁ , 36 s ₆ , 6 d ₇ , 6 d ₉ , 5 c ₁₃
12	B_1	906	36 r_{21} , 36 r_{27} , 17 r_{18} , 17 r_{30} , -9 t_{12}
13	A_2	913	36 r_{18} , 36 r_{30} , 24 r_{21} , 24 r_{27} , -15 t_{11} ,
			$-5 t_{10}$
14	A_1	1007	68 d ₉ , 9 s ₃ , 9 s ₄
15	A_1	1045	25 s ₃ , 25 s ₄ , 14 d ₉ , 10 r ₁₇ , 10 r ₂₉
16	B_2	1103	15 r_{17} , 15 r_{29} , 11 s_3 , 11 s_4 , 11 s_2 , 11 s_5 ,
			6 r ₂₀ , 6 r ₂₆
17	A_1	1232	19 r_{17} , 19 r_{29} , 18 r_{20} , 18 r_{26} , 6 s_2 , 6 s_5 ,
			$5 s_3, 5 s_4$
18	B_2	1289	$23 r_{17}, 23 r_{29}, 15 r_{23}, 9 c_{14}, 8 s_3, 8 s_4,$
			$6 s_1, 6 s_6$
19	B_2	1299	22 r_{23} , 20 r_{20} , 20 r_{26} , 9 s_1 , 9 s_6 , 5 c_{14}
20	B_2	1456	18 r_{20} , 18 r_{26} , 16 r_{23} , 15 s_1 , 15 s_6
21	A_1	1461	19 r_{20} , 19 r_{26} , 15 r_{17} , 15 r_{29} , 8 c_{13}
22	B_2	1594	29 r ₂₃ , 25 s ₃ , 25 s ₄ , 7 d ₈
23	B_2	1657	$33 s_2, 33 s_5, 14 r_{23}$
24	A_1	1688	$34 c_{13}$, $18 s_2$, $18 s_5$, $8 r_{20}$, $8 r_{26}$
25	A_1	1764	47 c_{13} , 10 s_2 , 10 s_5 , 8 d_7 , 5 s_1 , 5 s_6
26	B_2	3254	40 r_{19} , 40 r_{25} , 9 r_{16} , 9 r_{28}
27	A ₁	3254	$39 r_{19}, 39 r_{25}, 11 r_{16}, 11 r_{28}$
28	B_2	3274	40 r_{16} , 40 r_{28} , 9 r_{19} , 9 r_{25}
29	A_1	3275	$39 r_{16}$, $39 r_{28}$, $11 r_{19}$, $11 r_{25}$
30	A_1	3669	100 r ₂₂


^{*a*} Vibrational contributions are according to the M-matrix method of Pulay. The definitions of the internal coordinates are given in Table 6. Only contributions greater than 5% are listed.

and the aromatic ring π -system; especially strong π -overlap is calculated between the nitrogen atom and the fluorine ligand attached to it. This is shown for the totally bonding π -orbital in Figure 3. This increased aromaticity due to subsequent fluorination may rationalize why five fluorine ligands are necessary to obtain a substantial inversion barrier at the ring N-center.

Nowak et al. has studied the harmonic vibrational spectrum of 2-pyridone in detail¹⁴ using a potential energy distribution. We have carried out a similar analysis for 4-pyridone at the MP2 level. The internal coordinates and the major vibrational contributions are listed in Tables 6 and 7. Approximate diagrams for the major atomic displacements in 4-pyridone are presented in Figure 4. The irreducible representations (IRREPs) in the correct C_s and approximate C_{2v} symmetry are given for the nonplanar structures, Table 3. Note that in the low-frequency range the IRREP notation in C_{2v} symmetry for the nonplanar structures is only very approximate because the frequencies of the same symmetry (A' or A'') resulting from different IRREPs in C_{2v} symmetry can mix substantially, especially if they are nearly degenerate. Moreover, in the reduced C_s symmetry in-plane and outof-plane modes can mix.

Our results for 4-pyridone may be compared with those of Batts and Spinner published in 1969,²¹ i.e., we compare our Figure 4 with Figure 1 given in their paper. Some

Figure 4. Approximate diagrams for the fundamental vibrational modes of 4-pyridone derived from a MP2 harmonic frequency analysis.

of the modes are similar to those predicted by Batts and Spinner, but others show evidence of significant mixing between bending and stretching modes, Figure 4 and Table 7. The highest frequency of 3669 cm⁻¹ can be assigned to a pure and intense N–H stretching mode. This compares to 3445 cm⁻¹ given by Bellamy and Rogasch³⁰ or Costa et al.³¹ The PM3 value (Table 4) is 3412 cm⁻¹ and in better agreement with experiment than the MP2 result. We assume that a larger basis set would

^{(30) (}a) Bellamy, L. J.; Rogasch, P. E. *Proc. Roy. Soc. (A)* **1960**, *257*, 98. (b) Bellamy, L. J. *The Infra-Red Spectra of Complex Molecules*; Chapman and Hall: London, 1975.

⁽³¹⁾ Costa, G.; Blasina, P.; Sartori, G. Z. Physik Chem. (Frankfurt) 1956, 7, 123.

improve the MP2 frequencies. The carbonyl stretching band in 2-pyridone is found at 1730 cm⁻¹, above the ring breathing modes which are in the 1400–1650 cm⁻¹ range for all pyridine derivatives.³⁰ Due to difficulties in making an accurate assignment, this band has been discussed intensively in the literature. Figure 4 shows that the CO stretching mode at the MP2 level (A1 mode at 1688 and 1764 cm^{-1}) is heavily admixed with C=C stretching modes. This is shown in more detail in Table 7. However, only the mode at 1764 cm^{-1} is intense, probably corresponding to the 1635 cm⁻¹ mode assigned by Batts and Spinner. Other intense modes are calculated at 392 cm⁻¹ (B₁ out-of-plane mode), 823 cm⁻¹ (B₁ out-of-plane mode), 1007 and 1045 cm⁻¹ (A₁ ring breathing and bending modes), and 1594 cm⁻¹ (B₂ N-H rocking).

Intense Raman bands are observed experimentally in the 750–1050 cm⁻¹ region,²¹ and this agrees with our calculated Raman intensities. From the HF Raman intensities, and a comparison of the HF with the MP2 frequencies, we can assign the following bands as intense Raman modes (in cm⁻¹): 835 (A₁), 799 (A₂), 1007 (A₁), 1044 (A₁), 1232 (A₁), 1461 (A₁), 1688 (A₁), 1764 (A₁), and all the modes in the 3000 cm⁻¹ region. The C=O out-ofplane mode (B₁) is calculated to contribute to the 665 cm⁻¹ and 823 cm⁻¹ frequencies and is higher than that predicted by Dellepiane and Overend.³²

The measured dipole moment of 4-pyridone is approximately 6.0-6.3 D,³³ in reasonable agreement with our MP2 value of 6.7 D, Table 6. Notable is the change in the dipole moment for tetrafluoro-4-pyridone 4 when moving from the planar arrangement (4.40 D) to the nonplanar minimum structure (2.00 D). An indication that this might be due to partial loss of the zwitterionic aromatic resonance structure comes from the Mulliken population analysis. For the planar structure we obtain the following gross atomic charges: N - 0.19, O - 0.46. In the bent arrangement the difference between these charges is reduced (N -0.23, O -0.40). Finally we note that Adamowicz studied 2-pyridone at the HF/6-31G* level.¹³ A comparison with our HF/6-31G* result shows that 2-pyridone is more stable in the gas phase compared to 4-pyridone by 45 kJ/mol (not including zero-point vibrational contributions).

(32) Dellepiane, G.; Overend, J. Spectrochim. Acta **1966**, *22*, 593. (33) (a) D. G.Leis; Curran, B. C. J. Am. Chem. Soc. **1945**, *67*, 79. (b) Albert, A.; Phillips, J. N. J. Chem. Soc. **1956**, 1294.

Conclusion

Our calculations have shown that one fluorine ligand at the ring nitrogen is required to obtain a significant deviation from planarity. Structure **6** has a relatively high barrier for the fluorine out-of-plane motion, and therefore it should not be difficult to confirm the predicted nonplanar arrangement using experimental methods, for example by matrix isolation spectroscopy. PM3 seems to favor nonplanar structures for all ligands. Higher level calculations are needed to decide if the tetrafluoro or N-fluoro derivatives of 4-pyridone are planar or not. For the vibrational assignment of 4-pyridone larger basis sets are required to eliminate small discrepancies.

This work can be extended to different ligands which have a nonbenzenoid tautomer. It has been estimated, for example, that 2-hydroxypyridine has an aromatic stabilization energy of 30 kJ/mol estimated from the tautomeric enthalpy difference.^{6,22} In contrast, 2-methylpyridine has an aromatic stabilization energy of approximately 75 kJ/mol. Hence, changing the substituents in pyridine ring systems which undergo tautomerism (X = $O, CH_2, S,$ ³⁴ may significantly change the inversion barrier. Such effects have not been studied to date. We note that Facalli et al. studied derivatives of 2-pyridone.¹⁵ It was concluded that different substituents significantly influence the aromatic stabilization and the tautomeric equilibrium of 2-pyridone. It will also be interesting to examine the effects of less electronegative substituents such as chlorine; these should reduce the inversion barrier significantly. For example, the chloro derivatives of 4 and 5 may be planar.

Acknowledgment. This work was supported by the Auckland University Research Committee, the New Zealand/Federal Republic of Germany Science and Technology Agreement, the Humboldt Foundation (Bonn), and the Marsden Fund. The supply of large amounts of computer time by the High Performance Computer Committee, the SIC New Zealand, and the Marsden Fund is gratefully acknowledged. We thank Prof. Paul D. Woodgate for critically reading this paper.

Supporting Information Available: PM3, HF, and MP2 Cartesian coordinates and electronic energies for compounds 2-6 (Tables A1–A25, 25 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9710341

⁽³⁴⁾ Wu, C.-C.; Lien, M.-H. J. Phys. Chem. 1996, 100, 594.